Pembahasan Contoh Soal Materi Limit Fungsi Trigonometri #2
Berikut ini mimin sajikan beberapa contoh soal dan pembahasan pada materi limit fungsi trigonometri. Selamat membaca, sobat. Semoga bermanfaat.
Contoh soal 1
Nilai dari $\lim\limits_{x \to 0} \dfrac{\sin 5x+\sin 4x}{ \sin 3x}$ adalah ...
Jawab:
$\begin{aligned} & \lim\limits_{x \to 0} \dfrac{\sin 5x+\sin 4x}{ \sin 3x} \\ & = \lim\limits_{x \to 0} \dfrac{\sin 5x}{ \sin 3x} + \dfrac{\sin 4x}{ \sin 3x} \\ &= \frac{5}{3} +\frac{4}{3}\\&=\frac{9}{3}\\&=3 \end{aligned}$
Contoh soal 2
Nilai dari $\lim\limits_{x \to 0} \dfrac{1-\cos^{2} x}{1- \cos x}$ adalah ...
Jawab:
$\begin{aligned} & \lim\limits_{x \to 0} \dfrac{1-\cos^{2} x}{1- \cos x} \\ & = \lim\limits_{x \to 0} \dfrac{(1- \cos x)(1+ \cos x)}{1- \cos x} \\ &= \lim\limits_{x \to 0} 1+ \cos x \\&=1+1 \\&=2 \end{aligned}$
Contoh soal 3
Nilai dari $\lim\limits_{x \to 0} \sqrt{\dfrac{1-\cos x}{x^2}}$ adalah ...
Jawab:
$\begin{aligned} & \lim\limits_{x \to 0} \sqrt{\dfrac{1-\cos x}{x^2}} \\ &= \sqrt{ \lim\limits_{x \to 0} \dfrac{1-(1-2\sin^{2} \frac{1}{2}x)}{x^2}}\\&= \sqrt{\lim\limits_{x \to 0} \dfrac{1-1+2\sin^{2} \frac{1}{2}x)}{x^2}}\\&= \sqrt{\lim\limits_{x \to 0} 2 \times \dfrac{\sin \frac{1}{2}x}{x} \times \dfrac{\sin \frac{1}{2}x}{x}}\\&= \sqrt{2 \times \frac{1}{2} \times \frac{1}{2}} \\&= \sqrt{\frac{2}{4}}\\&= \frac{1}{2} \sqrt{2} \end{aligned}$
Contoh soal 4
Nilai dari $\lim\limits_{x \to 0} \dfrac{\cos x-\cos^{3} x}{x^2}$ adalah ...
Jawab:
$\begin{aligned} &\lim\limits_{x \to 0} \dfrac{\cos x-\cos^{3} x}{x^2} \\&= \lim\limits_{x \to 0} \dfrac{\cos x(1-\cos^{2} x)}{x^2}\\&= \lim\limits_{x \to 0} \dfrac{\cos x \sin^{2} x}{x^2} \\ &= \lim\limits_{x \to 0} \cos x \times \dfrac{\sin x}{x} \times \dfrac{\sin x}{x}\\&= 1 \times 1 \times 1\\&=1 \end{aligned}$
Contoh soal 5
Nilai dari $\lim\limits_{x \to 0} x \cot 2x$ adalah ...
Jawab:
$\begin{aligned} &\lim\limits_{x \to 0} x \cot 2x \\&= \lim\limits_{x \to 0} x \times \frac{\cos 2x}{\sin 2x}\\&= \lim\limits_{x \to 0} \frac{x}{\sin 2x} \times \cos 2x \\&= \frac{1}{2} \times 1 \\&= \frac{1}{2} \end{aligned}$
Contoh soal 6
Nilai dari $\lim\limits_{x \to 0} \frac{\cos 2x \sin 5x}{8x}$ adalah ...
Jawab:
$\begin{aligned} &\lim\limits_{x \to 0} \frac{\cos 2x \sin 5x}{8x} \\&= \lim\limits_{x \to 0} \cos 2x \times \frac{\sin 5x}{8x} \\&= 1 \times \frac{5}{8}\\&= \frac{5}{8} \end{aligned}$
Contoh soal 7
Nilai dari $\lim\limits_{x \to \frac{\pi}{3}} \frac{\tan (3x-\pi) \cos 2x}{\sin (3x-\pi)}$ adalah ...
Jawab:
$\begin{aligned} &\lim\limits_{x \to \frac{\pi}{3}} \frac{\tan (3x-\pi) \cos 2x}{\sin (3x-\pi)}\\&= \lim\limits_{x \to \frac{\pi}{3}} \frac{\tan (3x-\pi) }{\sin (3x-\pi)} \times \cos 2x\\&= \lim\limits_{x \to \frac{\pi}{3}} \cos 2x\\&= \cos (\frac{2 \pi}{3}) \\&= -\frac{1}{2} \end{aligned}$
Contoh soal 8
Nilai dari $\lim\limits_{x \to 0} {\dfrac{1-\cos 2x}{x^2}}$ adalah ...
Jawab:
$\begin{aligned} &\lim\limits_{x \to 0} {\dfrac{1-\cos 2x}{x^2}}\\&= \lim\limits_{x \to 0} {\dfrac{1-(1-2 \sin^{2}x)}{x^2}}\\&= \lim\limits_{x \to 0} {\dfrac{2 \sin^{2}x}{x^2}} \\&= \lim\limits_{x \to 0} 2 \left ( \frac{\sin x}{x} \right )^{2}\\&= 2.1^2\\&=2 \end{aligned}$
Contoh soal 9
Nilai dari $\lim\limits_{x \to 0} {\dfrac{1-\cos 4x}{1-\cos 6x}}$ adalah ...
Jawab:
$\color{red}{\text{Noted: } 1- \cos kx=2 \sin^2 \frac{1}{2}kx }$
$\begin{aligned} &\lim\limits_{x \to 0} {\dfrac{1-\cos 4x}{1-\cos 6x}} \\&= \lim\limits_{x \to 0} {\dfrac{2 \sin^2 2x}{2 \sin^2 3x}} \\&= \left ( \lim\limits_{x \to 0} {\dfrac{ \sin 2x}{ \sin 3x}} \right )^2 \\&= \left (\frac{2}{3} \right )^2\\&=\frac{4}{9} \end{aligned}$
Contoh soal 10
Nilai dari $\lim\limits_{x \to 0} \frac{\sqrt{9x}}{\sqrt{\sin 3x}}$ adalah ...
Jawab:
$\begin{aligned} &\lim\limits_{x \to 0} \frac{\sqrt{9x}}{\sqrt{\sin 3x}}\\&= \sqrt{\lim\limits_{x \to 0} \frac{9x}{\sin 3x}}\\&= \sqrt{\frac{9}{3}}\\&=\sqrt{3} \end{aligned}$
Demikianlah beberapa contoh soal dan pembahasan pada materi limit fungsi trigonomteri. Semoga bermanfaat.